

KS3 Progression Map: Geometry and Measures

This progression map expands upon the statements of subject content in the DfE document <u>Mathematics programmes of study:</u> <u>Key Stage 3</u> published September 2013. Suggested allocation of material to Years 7, 8 and 9 is given as starting points for writing schemes of work, but the implicit chronology is not intended to be prescriptive or restrictive; indeed, the programme of study is explicit that "Decisions about progression should be based on the security of pupils' understanding and their readiness to progress to the next stage. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content in preparation for key stage 4. Those who are not sufficiently fluent should consolidate their understanding, including through additional practice, before moving on". The NCETM fully endorses these principles, and will be developing further this progression map to help teachers achieve them.

Furthermore, although the map is organised by content, this is only for ease of reference and use. In the classroom, links between topics on the map, and between different maps, should be looked for and explored at every opportunity, so that "by the end of Key Stage 3, pupils … know, apply and understand the matters, skills and processes specified". Throughout Y7-9 pupils should have regular and opportunity and developmental feedback that helps them to **develop fluency**, to

- consolidate their numerical and mathematical capability from Key Stage 2 and extend their understanding of the number system and place value to include decimals, fractions, powers and roots
- select and use appropriate calculation strategies to solve increasingly complex problems
- move freely between different numerical, algebraic, graphical and diagrammatic representations [for example, equivalent fractions, fractions and decimals, and equations and graphs]

 use language and properties precisely to analyse numbers, algebraic expressions, 2-D and 3-D shapes, probability and statistics;

to reason mathematically, to

- extend their understanding of the number system; make connections between number relationships, and their algebraic and graphical representations
- extend and formalise their knowledge of ratio and proportion in working with measures and geometry, and in formulating proportional relations algebraically
- make and test conjectures about patterns and relationships; look for proofs or counter-examples
- begin to reason deductively in geometry, number and algebra, including using geometrical constructions
- interpret when the structure of a numerical problem requires additive, multiplicative or proportional reasoning
- explore what can and cannot be inferred in statistical and probabilistic settings, and begin to express their arguments formally;

and to **solve problems**, to

- develop their mathematical knowledge, in part through solving problems and evaluating the outcomes, including multi-step problems
- develop their use of formal mathematical knowledge to interpret and solve problems, including in financial mathematics
- begin to model situations mathematically and express the results using a range of formal mathematical representations
- select appropriate concepts, methods and techniques to apply to unfamiliar and non-routine problems.

The NCETM will be developing further resources to support the development and embedding of these skills.

Year 7	Year 8	Year 9		
Measuring and calculating				
draw and measure line segments and angles in	draw and measure line segments and angles in	draw and measure line segments and angles in		
geometric figures; calculate lengths represented	geometric figures; calculate lengths represented	geometric figures, including interpreting scale		
by line segments in scale drawings given scale	by line segments in scale drawings given scale	drawings		
factors as ratios in the form 1 : n, and understand	factors as ratios in any form, and understand			
that the lengths are approximate	implications of the accuracy of the measurements			
	for the accuracy of the calculated lengths			
derive and apply formulae to undertake	derive and apply formulae to undertake	undertake calculations and solve problems		
calculations and solve problems involving	calculations and solve problems involving:	involving: perimeters of 2-D shapes (including		
perimeter and area of rectangles	perimeter and area of triangles, parallelograms,	circles), areas of circles and composite shapes		
	trapezia, volume of cuboids (including cubes) and			
	other prisms (including cylinders)			
		use Pythagoras' Theorem and trigonometric		
		ratios in similar triangles to solve problems		
		involving right-angled triangles		
	Drawing and constructing			
describe, sketch and draw: points, lines, parallel	describe, sketch and draw: points, lines, parallel	describe, sketch and draw: points, lines, parallel		
lines, perpendicular lines, right angles, regular	lines, perpendicular lines, right angles, regular	lines, perpendicular lines, right angles, regular		
polygons, and other polygons that are reflectively	polygons, and other polygons that are reflectively	polygons, and other polygons that are reflectively		
and rotationally symmetric; use conventional	and rotationally symmetric; use conventional	and rotationally symmetric; use conventional		
terms and notations, such as using 'dashes' to	terms and notations, such as <i>complementary</i> to	terms and notations, such as definition, derived		
indicate equal lengths and (multiple) arrows to	describe angles with a sum of 90 $^{\circ}$ and	property and convention		
indicate parallel lines	supplementary to describe angles with a sum of			

	180°	
	derive and use the standard ruler and compass	use construction methods to: investigate what
	constructions (perpendicular bisector of a line	happens (for example to the angle bisectors, or
	segment, constructing a perpendicular to a given	perpendicular bisectors of sides, of triangles) in
	line from/at a given point, bisecting a given	changing situations; explore derived shapes,
	angle); recognise and use the perpendicular	such as circumcircles and inscribed circles of
	distance from a point to a line as the shortest	triangles, and other polygons (where possible)
	distance to the line	
use the standard conventions for labelling the		know and use the criteria for congruence of
sides and angles of triangle ABC		triangles
	Properties and relationships	
derive and illustrate properties [for example,	classify quadrilaterals by their geometric	derive and illustrate properties of circles
equal lengths and angles] of triangles,	properties, and provide convincing arguments to	
quadrilaterals, and other plane figures using	support classification decisions	
appropriate language and technologies		
apply translations, rotations and reflections to	know that translations, rotations and reflections	identify properties of, and describe the results of,
given figures, and identify examples of	map shapes onto congruent shapes; understand	translations, rotations and reflections applied to
translations, rotations and reflections (for	that the relation 'is congruent to' implies that	given figures; know that any reasoning using
example, be able to pick out from a group of	there exists a translation, rotation or reflection	these transformations could be replaced by
shapes those that are translations, rotations or	that takes one shape to another	reasoning using congruence criteria, and be
reflections of a given shape)		familiar with some examples
	construct similar shapes by enlargement, with	identify and construct congruent triangles, with
	and without coordinate grids	and without coordinate grids
apply the properties of angles at a point, angles	understand and use the relationship between	
at a point on a straight line, vertically opposite	parallel lines and alternate and corresponding	

angles	angles		
	derive and use the sum of angles in a triangle	use the sum of angles in a triangle to deduce the	
		angle sum in any polygon, and to derive	
		properties of regular polygons	
		apply angle facts, triangle congruence, similarity	
		and properties of quadrilaterals to derive results	
		about angles and sides, including Pythagoras'	
		Theorem, and use known results to obtain simple	
		proofs	
	use the properties of faces, surfaces, edges and	use the properties of faces, surfaces, edges and	
	vertices of cubes, cuboids, prisms and cylinders	vertices of cubes, cuboids, prisms, cylinders,	
	to solve problems in 3-D	pyramids, cones and spheres to solve problems	
		in 3-D	
interpret mathematical relationships both algebraically and geometrically			